孙小春,男,汉族,1981年4月出生,中共党员,基础数学专业理学博士,教授,硕士研究生导师。
学习经历:
1998年9月至2002年6月,澳门第一娱乐娱城官网数学与信息科学学院数学系攻读数学与应用数学本科专业,获理学学士学位;2004年9月至2007年6月在澳门第一娱乐娱城官网数学与信息科学学院攻读计算数学专业调和分析及其应用方向硕士研究生,并获理学硕士学位;2011年9月至2014年6月在北京师范大学数学学院攻读基础数学专业调和分析方向博士研究生,并获理学博士学位。
工作经历:
2002年7月至2004年8月,澳门第一娱乐娱城官网经济管理学院担任学生专职辅导员,研究实习员。2007年7月至今,澳门第一娱乐娱城官网从事教学科研工作。
主要社会兼职:
2016年6月受聘于澳门第一娱乐娱城官网附属中学特聘教师;2016年7月担任澳门第一娱乐娱城官网第一届教学督导与评估委员会委员。2017年3月至2020年12月兼任澳门第一娱乐娱城官网附属中学副校长。2021年至今任澳门第一娱乐娱城官网教务处副处长。
教学情况:
近年来主讲本科生《数学分析》、《实变函数》、《复变函数论》、《解析几何》、《高等数学》等课程。主持教学研究项目《基于高等数学课程对分课堂的实践与研究》获2016年澳门第一娱乐娱城官网重点立项支持(2016.11.29).参加完成澳门第一娱乐娱城官网教学研究项目《师范类数学专业复变函数课程的教学内容改革与实践》(2008047B),参与建设2013年《复变函数论》校级精品课程。2009年指导全国大学生数学建模竞赛获甘肃赛区一等奖,2010年指导全国大学生数学建模竞赛分获甘肃赛区特等奖及全国二等奖。2015年指导全国大学生数学建模竞赛获甘肃赛区一等奖1次,特等奖1次。主讲的《数学分析》课程获2015年澳门第一娱乐娱城官网第三届青年教师教学技能大赛一等奖,“甘肃省第三届高校青年教师教学大赛”二等奖。2016年荣获澳门第一娱乐娱城官网第七届学生心目中“我最喜爱的教师”荣誉称号。2016年被授予“甘肃省技术标兵”荣誉称号。2018年获得全国“明德教师奖”。2019年《数学与应用数学专业<数学分析Ⅲ>参与式研讨课教学改革的探索与实践》获批甘肃省高等教育教学成果培育项目。2020年主讲数学分析课程获批国家首批一流线下课程。2021年在首届高校教师教学创新大赛中荣获澳门第一娱乐娱城官网理工科副高组一等奖;甘肃省理工科副高组二等奖。2021年荣获澳门第一娱乐娱城官网教学成果一等奖2项,二等奖1项。荣获甘肃省教学成果特等奖1项。2021年荣获澳门第一娱乐娱城官网校级教学名师奖。
科研情况:
主要研究Lettlewood-Paley理论,时频分析,位势理论以及应用调和分析工具研究带旋转效应的不可压缩流体动力学方程的相关问题,在《Journal of Evolution Equations》《Mathematical Methods in the Applied Sciences》《SCIENCE CHINA Mathematics》、《Frontiers of Mathematics in China》等国内外正式出版的刊物上发表相关研究论文多篇。近年来受邀参加国际调和分析及其应用学术会议并作相关学术报告多次。参加完成《几类非线性微分方程模型的可解性研究》获2008 年甘肃省高等学校科技进步二等奖。主持国家自然科学基金青年基金项目1项、澳门第一娱乐娱城官网青年教师科研能力提升计划项目1项,参与国家自然科学地区基金项目4项(1项已结题),国家自然科学基金数学物理学部项目1项(已结题),国家自然科学面上项目1项,国家高校博士点(博导类)基金1项,甘肃省教育科学规划课题3项。2016年5月入选澳门第一娱乐娱城官网第二届“双星计划”,被授予“青年教师教学科研之星”称号。2021年入选澳门第一娱乐娱城官网第四届“双星计划”,被授予“青年教师教学科研之星”称号。
主持参与科研项目情况:
1. 主持国家自然科学基金青年基金项目:题目:调和分析方法在分数阶旋转流体方程研究中的应用,项目批准号:11601434. 研究期限:2017.1—2019.12,资助金额:19万,已结题;
2. 主持澳门第一娱乐娱城官网青年教师科研能力提升计划项目:题目:可变旋转效应下分数阶耗散型流体方程的适定性,项目批准号:NWNU-LKQW-14-2. 研究期限:2015.1—2018.12,资助金额:4万,已结题;
3. 参与国家自然科学地区基金项目:题目:变指数空间上Littlewood-Pelay算子及相关算子的研究与应用,项目批准号:11561062,研究期限:2016/01-2019/12. 资助金额:35万,已结题;
4. 参与国家自然科学地区基金项目:题目:傅里叶分析的历史研究,项目批准号:11461059,研究期限:2015/01—2018/12. 资助金额:46万,已结题;
5. 参与国家自然科学面上目:题目:相关于微分算子的函数空间和算子问题,项目批准号:11371057,研究期限:2014/01-2017/12. 资助金额:50万,已结题;
6. 参与国家高校博士点(博导类)基金:题目: 高阶微分算子相关的调和分析问题, 项目批准号:20130003110003,研究期限:2014/1-2016/12. 资助金额:12万,已结题;
7. 参与国家自然科学地区基金项目:题目:伪黎曼空间中2-调和类空子流形的研究,项目批准号:11261051,研究期限:2013/01-2016/12. 资助金额:45万,已结题;
8. 参与国家自然科学地区基金项目:题目:抛物型Calderon交换子的有界性及其应用,项目批准号:11161042,研究期限:2012/01-2015/12. 资助金额:36万,已结题。
9. 参与国家自然科学基金数学物理学部项目:题目:振荡Caleron交换子的有界性及应用,项目批准号:11071250,研究期限:2011/1-2013/12. 资助金额:24万,已结题。
10.参与甘肃省教育科学规划一般课题:题目:基于云计算的优质教育资源共建共享模式研究。已通过课题鉴定。鉴定证书号:GSGB[2019]J1622。
11.参与甘肃省教育“十三五”规划重点课题:题目:STEAM教育与核心素养的对接及实践研究。已通过课题鉴定。鉴定证书号:GSGB[2020]J2657。
12.参与2020年甘肃省教育科学规划“疫情与教育”专项课题:题目:疫情防控期间提升线上教育质量的对策与策略研究。已通过课题鉴定。鉴定证书号:GSGB[2020]YQJ153。
[1] G. He, X. Sun, Existence of Periodic Solutions to the Fractional Navier-Stokes-Coriolis Equation, Advances in Applied Mathematics, 2022,11(1): 193-203.
[2] M. Liu and X.Sun, Uniqueness of solutions to initial value problems of fractional anisotropic Navier-Stokes Equations, Pure Math., 2021,11(12),1957-1966.
[3] X. Sun and J. Liu, Long-time decay to global solution of the 2D dissipative, Journal of Northwest Normal University (Natural Science), 2021, 57(1) : 8-14.
[4] X. Sun, J. Liu, Long time decay of the fractional Navier-Stokes equations in Sobolev-Gevery spaces, Journal of Nonlinear Evolution Equations and Applications, 2021, 2021(6):119–135.
[5] X. Sun and Y. Ding, Dispersive effect of the Coriolis force and the local well-posedness for the fractional Navier-Stokes-Coriolis system, Journal of Evolution Equations, 2020, 20: 335-354(SCI).
[6] X. Sun and H. Liu, Uniqueness of the weak solution to the fractional anisotropic Navier-Stokes equations, Mathematical Methods in the Applied Sciences, 2020:1-12(SCI).
[7] X. Sun and J. Liu, Existence and Uniqueness of the Solution to the 3D Navier-Stokes Equations in the Homogeneous Sobolev-Gevrey Space, International Journal of Engineering and Applied Sciences, 2020, 7(10) : 16-18.
[8] K. Chen, R. Ma, X. Sun, On Mergence of ‘Marxism, Chinese Tradition and Western Culture’ with mathematical logic. Journal of Northwest Normal University , 2018, 55(2): 5-9.
[9] K. Chen, R. Ma, X. Sun, The intrinsic relation between the Pythagorean theorems and Chinese diagram of the universe, Journal of Northwest Normal University,, 2016, 52(5): 1-4.
[10] Y. Ding and X. Sun, Strichartz estimates for parabolic equations with higher order differential operators. Sci. CHINA Math., 2015, 58(5): 1047-1062(SCI).
[11] Y. Ding and X. Sun, Uniqueness of weak solutions for fractional Navier-Stokes equations. Front. Math. China, 2015, 10(1): 33-51(SCI).
[12] J. Zhang and X. Sun, Characterization of two kinds of integrals in Guicharder-Fock space, Journal of Lanzhou university of technology, 2011, 37(2):153-155.
[13] J. Zhang and X. Sun, Some properties of conditional expectation in Guichardet-Fock space, Journal of Southwest University for Nationalities, 2009, 35(6): 1130-1130.
[14] T. Tao, J. Wu and X. Sun, Boundedness for commutators on homogeneous Morrey-Herz spaces, J. of Math., 2009, 29(1): 21-26.
[15] X. Sun, Almost Conserved Qualities of Modiefied Energy for the Initial Value Problem of the Kawahara Equations, Journal of Gansu Normal Colleges, 2007, 12(2): 10-13.
[16] X. Sun, The Cauchy problem for a class of Kawahara Equations, Journal of Tianshui Normal University, 2007, 27(2): 3-4.
[17] X. Sun, Property of solutions to the Cauchy problems in Kawahara-Burges equation, Journal of Chongqing Institute of Technology, 2007, 21(4): 15-17.
[18] T. Tao and X. Sun, Characterization of Besov spaces via generalized Lusin-Area integral operator, Journal of Lanzhou University, 2006, 42(3): 108-111.
[19] T. Tao, J. Wu and X. Sun, Some basic inequalities and interpolation theorems on homogeneous Morrey Herz spaces, Journal of Northwest Normal University, 2006, 42(4): 5-10.