杨晓燕,现任澳门第一娱乐娱城官网教授、博士生导师、校学术委员、美国《Math.Review》评论员。2019.01--2020.1在美国犹他大学访问学习。主要研究方向是环的同调理论,已完成SCI学术论文近40篇。入选2013年度教育部“新世纪优秀人才支持计划”;入选甘肃省第三批“飞天学者特聘计划”青年学者;入选2020年陇原青年创新创业人才个人项目。主持完成青年科学基金和地区科学基金项目各1项;承担地区科学基金项目1项;主持完成中国博士后科学基金项目1项;参与国家自然科学基金项目3项(排名分别为第三、第二、第二);主持澳门第一娱乐娱城官网青年教师科研能力提升计划创新团队项目1项。作为牵头人,获甘肃省高校科技进步二等奖2次,一等奖1次; 作为第一参与人,获甘肃省自然科学三等奖1次。
主要科研论文:
[1]Yang Xiaoyan and Liu Zhongkui, Strongly Gorenstein projective, injective and flat modules, Journal of Algebra, 320 (2008) 2659–2674.
[2]Liu Zhongkui and Yang Xiaoyan, Left APP-property of formal power series rings, Archivum Mathematicum (Brno), 44 (2008) 185-189.
[3]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat modules, J. Aust. Math. Soc., 87 (2009) 395-407.
[4]Yang Xiaoyan and Liu Zhongkui, FP-injective complexes, Comm. Algebra, 38 (2010) 131-142.
[5]Liu Zhongkui and Yang Xiaoyan, On annihilator ideals of skew monoid rings, Glasgow Math. J., 52 (2010) 161-168.
[6]Yang Xiaoyan and Liu Zhongkui, C-Gorenstein projective, injective and flat modules, Czechoslovak Math. J., 60 (2010) 1109-1129.
[7]Yang Xiaoyan and Liu Zhongkui, D-Gorenstein projective, injective and flat modules, Algebra Colloq., 18 (2011) 273-288.
[8]Yang Xiaoyan and Liu Zhongkui, n-flat and n-FP injective modules, Czechoslovak Math. J., 61 (2011) 359-369.
[9]Yang Xiaoyan and Liu Zhongkui, Gorenstein projective, injective and flat complexes, Comm. Algebra 39 (2011) 1705-1721.
[10]Di Zhenxing and Yang Xiaoyan, Transfer properties of Gorenstein homological dimension with respect to a semidualizing module,J. Korean Math. Soc. 49 (2012)1197-1214.
[11]Yang Xiaoyan and Liu zhongkui, V-Gorenstein projective, injective and flat modules, Rocky Mt. J. Math., 42 (2012) 2075-2098.
[12]Yang Xiaoyan and Liu ZHongkui, DG-projective, injective and flat complexes, Algebra Colloq. 20 (2013) 155-162.
[13]Yang Xiaoyan and Zhao Jianlian, Gorenstein flat and cotorsion dimensions of unbounded complexes, Comm. Algebra 41 (2013) 2978-2990.
[14]Yang Xiaoyan, Notes on proper class of triangles, Acta Mathematica Sinica, English Series 29 (2013) 2137-2154.
[15]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math., 38 (2014) 819-832.
[16]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[17]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[18]Yang Xiaoyan and Liu Zhongkui, On nonnil-noetherian rings, Southeast Asian Bull. Math., 33 (2009) 1215-1223.
[19]Liu Zhongkui and Yang Xiaoyan, Triangular matrix representations of skew monoid rings, Math. J. Okayama Univ., 52 (2010) 97-109.
[20]Yang Xiaoyan and Liu Zhongkui, FP-gr-injective modules, Math. J. Okayama Univ., 53 (2011) 83-100.
[21]Yang Xiaoyan, Gorenstein homological dimensions and change of rings, Journal of Mathematical Research with Applications, 32 (2012) 571-581.
[22]Yang Xiaoyan, Covers and preenvelopes by V-Gorenstein flat modules, Turk. J. Math. 38 (2014) 819-832.
[23]Yang Xiaoyan, n-strongly Gorenstein projective and injective and flat modules, Chin. Quart. J. Math. 29 (2014) 553-564.
[24]Yang Xiaoyan and Ding Nanqing, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015) 430–476.
[25]Yang Xiaoyan, Model structures on triangulated categories, Glasgow Math. J. 57 (2015) 263–284.
[26]Yang Xiaoyan and Wang Junpeng, The existence of homotopy resolutions of N-complexes, Homology, Homotopy Appl. 17 (2015) 291–316.
[27]Yang Xiaoyan and Ding Nanqing, On a question of Gillespie, Forum Math. 27 (2015) 3205–3231.
[28]Yang Xiaoyan, Gorenstein categories G(X ,Y ,Z ) and dimensions, Rocky Mt. J. Math. 45 (2015) 2043-2064.
[29]Yang Xiaoyan, W-resolutions and Gorenstein categories with respect to a semidualizing, J. Korean Math. Soc. 53 (2016) 1-17.
[30]Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Depth for triangulated categories, Bull. Korean Math. Soc. 53 (2016) 551–559.
[31] Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Vanishing of Tate homology — an application of stable homology for complexes, Acta Mathematica Sinica, English Series 32 (2016) 831–844.
[32] Yang Xiaoyan,Wang Zhicheng, Proper resolutions and Gorensteinness in triangulated categories, Rocky Mt. J. Math. 47 (2017) 1013-1053.
[33] Yang Xiaoyan, Chen Wenjing, Relative homological dimensions and Tate
cohomology of complexes with respect to cotorsion pairs, Comm. Algebra 45 (2017) 2875–2888.
[34] Yang Xiaoyan, Cao Tianya, Cotorsion Pairs in CN(A ), Algebra Colloq. 24 (2017) 577-602.
[35] Liu Yanping, Liu Zhongkui and Yang Xiaoyan, Complete flat resolutions, Tate homology and the depth formula, Kodai Math. J. 40 (2017) 1–15.
[36] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Singularity Categories with Respect to Ding Projective Modules, Acta Mathematica Sinica, English Series, 33 (2017) 793–806.
[37] Wang Chao and Yang Xiaoyan, (Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras, Czechoslovak Math. J. 67 (2017) 1031-1048.
[38]Zhenxing Di, Zhongkui Liu, Xiaoyan Yang, Xiaoxiang Zhang, Triangulated equivalence between a homotopy category and a triangulated quotient category, J. Algebra 506(2018)297-321.
[39] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Compactly generated triangulated subcategories of homotopy categories induced by cotorsion pairs, Journal of Algebra and Its ApplicationsVol. 17 (10) (2018) 1850180 (14 pages).
[40] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, Recollements associated to cotorsion pairs, Journal of Algebra and Its Applications 17 (1) (2018) 11850141 (15 pages).
[41] Zhang Wanru, Liu Zhongkui and Yang Xiaoyan, Foxby equivalences associated to strongly Gorenstein modules, Kodai Math. J. 41 (2018) 397–412.
[42] Zhang Wanru, Liu Zhongkui and Yang Xiaoyan, Foxby equivalences associated to Gorenstein categories G(X,Y,Z), Comm. Algebra 46 (2018) 4042–4051.
[43] Cao Tianya, Liu Zhongkui and Yang Xiaoyan, Derived category with respect to Gorenstein AC-projective modules, Kodai Math. J. 41 (2018) 579–590.
[44] 汪军鹏,刘仲奎,杨晓燕, Gillespie 所提出一个问题的否定回答, 48 (2018) 1121–1130.
[45] Xie Zongyang,Yang Xiaoyan, The homotopy ctegories of N-complexes of injectives and projectives, J. Korean Math. Soc. 56 (2019) 623-644.
[46] Chen Wenjing, Liu Zhongkui and Yang Xiaoyan, A new method to construct model structures from a cotorsion pair, Comm. Algebra 47(2019) 4420-4431.
[47] 曹天涯,刘仲奎,杨晓燕, 纯奇点范畴中的Buchweitz定理, 数学学报4(2019)553-560.
[48] Yang Xiaoyan, Rao Yanping, Depth and amplitude for DG-modules, Comm. Algebra 48 (2020) 2051-2064
[49] Yang Xiaoyan,Wang Li, Homological invariants over non-positive DG-rings, Journal of Algebra and Its ApplicationsVol. 19 (10) (2020) 1850180 (18 pages).
[50] 陈文静,刘仲奎,杨晓燕, 相对于 G(X ) 的导出范畴, 50 (2020) 1121–1130.
项目:
[1]杨晓燕、吴德军、王欣欣,澳门第一娱乐娱城官网三期“知识与科技创新工程”科研骨干培育项目,批准号:NWNU-KJCXGC-03-68,2010.01—2011.12。
[2]杨晓燕、乔虎生、吴德军,Hopf代数上的Gorenstein同调性质,青年科学基金项目,批准号:11001222,2011.01—2013.12。
[3]刘仲奎、赵仁育、杨晓燕、王占平、张文汇、张春霞,复形范畴中的Gorenstein同调维数,国家自然科学基金项目,批准号:10961021, 2010.01—2012.12。
[4]杨晓燕、刘仲奎、赵仁育、张翠萍,同伦范畴的recollement、余(t)-结构和同调维数理论, 国家自然科学基金项目,批准号:10361051,2014.01—2017.12。
[5]杨晓燕,Grothendieck范畴中复形的同调维数,中国博士后科学基金项目,批准号:BK201106,8 2011.09—2014.02。
[6]杨晓燕,新世纪优秀人才支持计划, 教育部,批准号:NCET-13-0957,2014.01—2016.12。
[7]国家自然科学基金项目:广义幂级数环理论研究,起止年月:2014.1—2017.12 (参与)。
[8] 杨晓燕, 入选甘肃省第三批“飞天学者特聘计划”青年学者。
[9] 杨晓燕,“三角范畴的支撑和余支撑”入选陇原青年创新创业人才个人项目,2020.03—2021.02。
[10] 杨晓燕,张翠萍,武斌, 微分分次范畴的同调维数、recollements和Morita理论, 国家自然科学基金项目,批准号:11761060, 2018.01—2021.12。
[11] 杨晓燕,任伟,王占平,赵仁育,狄振兴,张文汇,张翠萍,环的同调理论,澳门第一娱乐娱城官网青年教师科研能力提升计划创新团队项目,批准号: NWNU-LKQN-16-5 2017.01—2019.12。
获奖:
[1]杨晓燕、刘仲奎、张文汇、张春霞、王占平,模范畴和复形范畴中的Gorenstein同调性质,甘肃省高校科技进步二等奖,2010年。
[2]杨晓燕、吴德军、刘仲奎、赵仁育、杨刚、王占平, Gorenstein同调复形及余挠理论, 甘肃省科技厅,甘肃省高校科技进步奖,二等奖,2012。
[3]刘仲奎、杨晓燕、赵仁育、乔虎生、张春霞,复形的相对同调代数,甘肃省科技厅,甘肃省自然科学奖,三等奖,2013。
[4]杨晓燕、赵仁育、王占平、乔虎生、任伟,复形的 Gorenstein同调维数及Ding导出范畴, 甘肃省科技厅,甘肃省高校科技进步奖,一等奖,2014。