张旭萍老师简介

文章来源:澳门第一娱乐娱城官网发布日期:2020-05-28浏览次数:4011




张旭萍,汉族,中共党员,理学博士,19869月生,甘肃景泰人20106本科毕业于澳门第一娱乐娱城官网数学系; 20106月在澳门第一娱乐娱城官网获非线性分析方向硕士学位;20186月在澳门第一娱乐娱城官网获非线性分析方向博士学位20201月至20211月作为访问学者访问了美国New Mexico Technology大学数学系Bixiang Wang教授现为澳门第一娱乐娱城官网副教授,硕士研究生导师。兼任美国《Math Review》和德国《Zentralblatt MATH评论员主要从事非线性泛函分析与无穷维随机动力系统的研究工作,近年来在权威数学刊物《Math. Annalen》、《J. Geom. Anal.、《 Bull. Sci. Math. 》、《 J. Dynam. Differential Equations》、《 J. Evol. Equ. 》、《Discrete Contin. Dyn. Syst. Ser. B》、Commun. Pure Appl. Anal.》、《Fract. Calcu. Appl. Anal》、 Nonlinear Anal. Model. Control 》、J. Fixed Point Theory Appl.》、Int. J. Nonlinear Sci. Numer. Simul.》、《 J. Appl. Anal. Comput.》、《 Electron. J. Differential Equations 等上发表学术论文30余篇。2018年在科学出版社出版专著《抽象发展方程非局部问题的可解性及其应用》1部。主持完成甘肃省高等学校科研项目2项;参与完成国家自然科学基金项目3项、甘肃省自然科学基金项目3项;现主持甘肃省自然科学基金项目甘肃省高等学校青年博士支持项目、西北师范大学青年教师科研能力提升计划骨干项目各1项;研究成果获甘肃省自然科学三等奖和甘肃省高等学校科学研究优秀成果三等奖各1指导学生获高教社杯全国大学生数学建模竞赛甘肃赛区本科组一等奖、二等奖多项


主讲课程

主要承担本科生《数学分析》、《实变函数》、《泛函分析》、《高等数学》及研究生《非线性泛函分析》等课程的教学工作。


科研项目

[1]主持甘肃省自然科学基金项目“中立型时滞发展方程非局部问题研究(项目编号: 20JR5RA522, 起止年月:2020.11-2022.10).

[2]主持甘肃省高等学校青年博士支持项目“非局部发展方程的适定性与随机动力学(起止年月:2023.1-2023.12).

[3]主持甘肃省高等学校科研项目“分数阶脉冲发展方程的单调迭代方法”(项目编号: 2015A-213, 起止年月:2015.07-2016.06).

[4]主持甘肃省高等学校科研项目“抽象脉冲时滞发展方程非局部问题的可解性及其应用(项目编号:2019B-213, 起止年月:2019.07-2021.06).

[5]主持澳门第一娱乐娱城官网青年教师科研能力提升计划项目“时滞发展方程非局部问题的可解性研究(项目编号: NWNU-LKQN2019-13, 起止年月:2020.01-2022.12).

[6] 参加国家自然科学基金青年项目“抽象分数阶时滞发展方程非局部问题可控性的研究”(项目编号:11701457, 起止年月:2018.01-2020.12).

[7] 参加国家自然科学基金青年项目“两类非线性薛定谔方程的最优控制问题”(项目编号:11601435, 起止年月:2017.01-2019.12).

[8] 参加国家自然科学基金地区项目“几类完全形式的非线性边值问题解的存在性及多重性”(项目编号:11661071, 起止年月:2017.01-2020.12).

[9] 参加国家自然科学基金地区项目“抽象时滞发展方程周期解的存在性及渐近性态”(项目编号: 11261053, 起讫年月: 2013.01-2016.12).


代表性学术论文

[1]Pengyu Chen, Bixiang Wang, Renhai Wang, Xuping Zhang, Multivalued random dynamics of Benjamin- Bona-Mahony equations driven by nonlinear colored noise on unbounded domains, Math. Annalen, doi: 10.1007/s00208-022-02400-0(国际一流期刊T1).

[2]Pengyu Chen, Xiaohui Zhang, Xuping Zhang, Asymptotic behavior of non- autonomous fractional stochastic p-Laplacian equations with delay on R^n, J. Dynam. Differential Equations, doi: 10.1007/ s10884-021-10076-4(高水平期刊T3).

[3]Pengyu Chen, Mirelson M. Freitas, Xuping Zhang, Random Attractor, Invariant Measures and Ergodicity of Lattice p-Laplacian Equations Driven by Superlinear Noise, J. Geom. Anal., 33: 98, 2023(国际知名期刊T2).

[4]Xuping Zhang, Pengyu Chen, Weak mean attractors of stochastic p-Laplacian delay lattice systems driven by nonlinear noise, Bull. Sci. Math.,182, No. 103230, 31 pp,2023(国际知名期刊T2)

[5]Xiaohui Zhang, Xuping Zhang, Upper semi-continuity of non-autonomous fractional stochastic p-Laplacian equation driven by additive nose on Rn, Discrete Contin. Dyn. Syst. Ser. B, 28(1): 385-407, 2023(高水平期刊T3).

[6]Xuping Zhang, Donal O’Regan, Solving fuzzy fractional evolution equations with delay and nonlocal conditions, J. Appl. Anal. Comput., 13(2): 1000-1013, 2023(高水平期刊T3).

[7]Xuping Zhang, Pullback random attractors for fractional stochastic p-Laplacian equation with delay and multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 27(3): 1695-1724, 2022(高水平期刊T3).

[8]Pengyu Chen, Xuping Zhang, Random dynamics of stochastic BBM equations driven by nonlinear colored noise on unbounded channel, J. Evolution Equations, 22: 87, 2022(高水平期刊T3).

[9]Pengyu Chen, Bixiang Wang, Xuping Zhang, Dynamics of fractional nonclassical diffusion equations with delay driven by additive noise on R^n, Discrete Contin. Dyn. Syst. Ser. B, 27(9): 5129-5159, 2022(高水平期刊T3).

[10]Xuping Zhang, Yanli Xi, Donal O’Regan, Well-posedness and stability for fuzzy fractional differential equations, Nonlinear Anal. Model. Control,27(5):980-993, 2022(T2).

[11]Xuping Zhang, Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions, Electron. J. Differential Equations, No. 31, pp. 1-14, 2022.

[12]Xuping Zhang, Pan, Sun. Existence results for neutral evolution equations with nonlocal conditions and delay via fractional operator, Open Math., 20: 478-491, 2022.

[13]Pengyu Chen, Xuping Zhang, Zhitao Zhang, Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays, Discrete Contin. Dyn. Syst. Ser. B, 27 (3)1611-1627, 2022(高水平期刊T3).

[14]Xuping Zhang, Pengyu Chen, Donal O'Regan, Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations,Fract. Calcu. Appl. Anal., 24(6):1758-1776, 2021(高水平期刊T3).

[15]Pengyu Chen, Renhai Wang, Xuping Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 173, 103071, 2021(国际知名期刊T2).

[16]Pengyu Chen, Xuping Zhang, Existence of attractors for stochastic diffusion equations with fractional damping and time-varying delay,J. Math. Phys., 62, 022705, 2021(国际知名期刊T2).

[17]Pengyu Chen, Xuping Zhang,Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions, Discrete Contin. Dyn. Syst. Ser. B, 26(9): 4681- 4695, 2021(高水平期刊T3).

[18]Pengyu Chen, Xuping Zhang, Upper semi-continuity of attractors for non- autonomous fractional stochastic parabolic equations with delay, Discrete Contin. Dyn. Syst. Ser. B, 26(8): 4325-4357, 2021(高水平期刊T3).

[19]Pengyu Chen, Yongxiang Li, Xuping Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 26(3): 531-1547, 2021(ESI高被引论文高水平期刊T3).

[20]Xuping Zhang, Zhen Xin, Existence,Uniqueness and UHR stability of solutions to nonlinear ordinary differential equations with noninstantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 21(2) :195-203, 2020(高水平期刊T3).

[21]Xuping Zhang, Pengyu Chen,Yongxiang Li, Monotone iterative method for retarded evolution equations involving nonlocal and impulsive conditions, Electron. J. Differential Equations, No. 68, 25 pp, 2020.

[22]Xuping Zhang, Pengyu Chen, Yongxiang Li, Fractional retarded differentialequations involving mixed nonlocal plus local initial conditions, Numer. Funct. Anal. Optim., 40(14): 1678-1702, 2019.

[23]Xuping Zhang, Haide Gou,Yongxiang Li, Existence results of mild solutions for impulsive fractional integrodifferential evolution equations with nonlocal conditions, Int. J. Nonlinear Sci. Numer. Simul., 20(1): 1-16, 2019(高水平期刊T3).

[24]Xuping Zhang, Pengyu Chen, Ahmed Abdelmonem, Yongxiang Li, Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69(1):111-124, 2019.

[25]Xuping Zhang, Yongxiang Li, Fractional retarded evolution equations with measure of noncompact

ness subjected to mixed nonlocal plus local initial conditions, Int. J. Nonlinear Sci. Numer. Simul., 19(1): 69-81, 2018(高水平期刊T3).

[26]Xuping Zhang, Pengyu Chen, Ahmed Abdelmonem, Yongxiang Li, Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90(7): 1005-1022, 2018(高水平期刊T3).

[27]Xuping Zhang, Qiyu Chen, Yongxiang Li, Existence and regularity of mild solutions in some interpolation spaces for functional partial differential equations with nonlocal initial conditions, Open Math., 16: 113-126, 2018.

[28]Xuping Zhang, Yongxiang Li, Pengyu Chen, Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses,  J. Fixed Point Theory Appl., 19(4): 3013-3027, 2017(高水平期刊T3).

[29] Xuping Zhang, Pengyu Chen, Fractional evolution equation nonlocal problems with noncompact semigroups, Opuscula Math., 36(1): 123-137, 2016.

[30]Pengyu Chen, Yongxiang Li, Xuping Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14(5): 1817-1840, 2015(高水平期刊T3).


Baidu
sogou