王占平老师简介

文章来源:管理员发布日期:2017-03-19浏览次数:7422

       

王占平简介

王占平,女, 汉族,甘肃天水人。 2006年参加工作, 2007--2008年在北京师范大学进修。2006--2010年攻读博士学位,2012--2014年在上海交通大学数学系博士后流动站工作,2018年晋升为教授,主要研究方向是环的同调理论。主要承担本科生的《高等代数》、《近世代数》、《高等数学》、《线性代数》和研究生的《代数基础》、《同调代数理论》、《三角范畴和导出范畴》等教学工作。 


科研项目: 

1.主持国家自然科学基金项目:三角范畴中的相对同调性质和Hovey三元组,起止年月:201601--201912. 

2.主持国家自然科学青年基金项目:复形的相对同调和Tate上同调,起止年月:201301--201512. 

3.主持甘肃省自然科学基金项目:关于Gorenstein平坦复形的研究,起止年月:201301—201512. 

4.主持中国博士后科学基金面上资助项目:复形范畴中的相对同调性质,201301—201412. 

5.主持国家自然科学基金数学天元基金项目:复形的相对同调维数,起止年月:201201--201212. 

6.主持澳门第一娱乐娱城官网青年教师提升计划项目:复形范畴中Gorenstein同调性质的相关研究,起止年月:201201--201412.

6.参与国家自然科学基金项目:复形范畴中的模型结构和相对上同调理论,起止年月:201301—201612. 

 8.参与国家自然科学基金项目:复形范畴中的Gorenstein同调维数,起止年月:201001—201212. 

9.参与国家自然科学基金数学天元基金项目:σ[M]范畴中的覆盖、包络理论研究,起止年月:201101—201112. 


获奖: 

1.复形的Gorenstein同调维数及Ding导出范畴,2014年甘肃省高校科技进步奖一等奖.(第三完成人) 

2.Gorenstein同调复形及余挠理论,2012年甘肃省高校科技进步奖二等奖.(第六完成人) 

3.模范畴和复形范畴中的Gorenstein同调性质,2010年甘肃省高校科技进步奖二等奖.(第五完成人) 

4.广义幂级数环理论研究,2007年甘肃省自然科学二等奖. (第四完成人) 


主要学术论文:

1.Zhanping Wang, Gang Yang & Rongmin Zhu (2019) Gorenstein flat modules with respect to duality pairs, Communications in Algebra, 47:12, 4989-5006

2.Wang Zhanping, Resolutions and Stability of Gorenstein Classes of Modules,Bull.Malays.Math.Sci.Soc.(2019).https://doi.org/10.1007/s40840-019-00752-6.

3.Liu Zhongkui, Wang Zhanping, On Gorenstein projective dimensions of unbounded complexes,Chin. Ann. Math. to appear.

4.Wang Zhanping, Liangli, Relative cohomology and Tate cohomology in the 

category of complexes,to appear.

5.Wang Zhanping, Zhang Ruijie, Ding projective modules over Frobenius extensions, (Chinese) J. Shandong Univ. Nat. Sci. to appear.

6.Wang Zhanping,Yuan Kaiying, Strongly Gorenstein injective modules with respect to cotorsion pairs, (Chinese) J. Shandong Univ. Nat. Sci. 54 (2019), no. 8, 102--107.

7.Wang Zhanping, Deng Yaping, n-strongly Gorenstein projective modules with respect to cotorsion pairs. (Chinese) J. Northwest Normal Univ. Nat. Sci.55(2019),no3,5--8.

8.Guo, Shou Tao; Wang, Zhan Ping Gorenstein homological dimensions of modules under exact zero-divisors. (Chinese) J. Shandong Univ. Nat. Sci. 53 (2018), no. 10, 17–21. 

9.Guo, Shou Tao; Wang, Zhan Ping,  G C -homological dimensions of modules under exact zero-divisors. (Chinese) J. Jilin Univ. Sci. 56 (2018), no. 6, 1349–1353.

10. Wang Zhanping,Guo shoutao,Ma haiyu, Stability of Gorenstein modules with respect to a semidualing module, J. Math.,2017,37(6),1143-1153.

11. Wang Zhanping, Liu Zhongkui, Strongly Gorenstein flat dimensions of complexes, Comm.Algebra,2016,44(4) ,1390--1410.

12. Zhu, Rongmin; Liu, Zhongkui; Wang, Zhanping Gorenstein homological dimensions of modules over triangular matrix rings. Turkish J. Math. 40 (2016), no. 1, 146–160. 

13. Wang Zhanping,Liang Chunli,Dc‐projective modules and its dimension under change of ring s,(Chinese) J. Northwest Normal Univ. Nat. 2015,51(4),14—17.

14. Zhu, Rongmin; Wang, Zhanping, Gorenstein projective modules and dimensions over Triangular matrix ring of order n, (Chinese) J. Northwest Normal Univ. Nat. Sci.50(2015),no12,85--92.

15. Wang Zhanping, Ma Haiyu,Strongly Gorenstein flat dimension of modules, Journal of Mathematical Research with Applications,2014, 34(3), 307—315. 

16. Wang Zhanping, Liu, Zhongkui, Stability of strongly Gorenstein flat modules, Vietnam J. Math. 42 (2014), no. 2, 171—178. 

17. Wang Zhanping, Liu Zhongkui, Complete cotorsion pairs in the category of complexes,Turk. J. Math. ,2013,37, 852—862. (SCI) 

18. Wang Zhanping, Remarks on rings with zero products commuting and zero insertion properties, Vietnam J. Math., 2012,40:1,107—113. 

19. Wang Zhanping, Liu Zhongkui, Gorenstein cotorsion and flat complexes, Journal of Algebra and Its Applications, 2012,11:4,1250068(14pages). (SCI) 

20. Wang Zhanping, Wang Limin, ZCn rings and ZIn rings, Algebra Colloq., 2012,20:4,631—636. (SCI) 

21. Wang Zhanping, Liu Zhongkui, Some covers and envelopes in chain complex category of R-modules, J. Aust. Math. Soc.,90(2011), 385--401. (SCI) 

22. Wang Zhanping, Liu Zhongkui, FP-injective complexes and FP-injective dimension of complexes,J. Aust. Math. Soc.,91(2011),163--187. (SCI) 

23. Wang Zhanping, Liu Zhongkui, Complexes of Gorenstein flat modules and Gorenstein cotorsion modules, Comm.Algebra, 38(2010), 3752--3766. (SCI) 

24. Wang Zhanping, Liu Zhongkui, Gorenstein flat complexes over coherent rings with finite self-FP-injective dimension, Comm. Algebra, 38(2010), 4362--4374. (SCI) 

25. Wang Zhanping, Liu Zhongkui, Special precovers and preenvelopes of complexes, arXiv:1301.6595

26. Wang, Zhanping, Extensions of symmetric rings, J. Math. Res. Exposition 27 (2007), no. 2, 229--235; 

27. Wang Zhanping, Wang Limin, Polynomial rings over symmetric rings need not be symmetric, Comm. Algebra, 34(2006), 3609--3613. (SCI)

28. Wang, Zhan Ping; Wang, Li Min; Liu, Zhong Kui,  Subrings satisfying ZC n  (ZI n )  of the upper triangular matrix ring.  (Chinese) J. Northwest Normal Univ. Nat. 42 (2006), no. 2, 19--22.

 


Baidu
sogou